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INTRODUCTION

Long Term Evolution (LTE) is the well known radio access technology specified by one of the
global standards developing organization, the Third Generation Partnership Project (3GPP)[1]. In
this paper we consider a problem of radio resource allocation (RA) which can be adapted towards
RA for LTE downlink transmission. Since the LTE downlink transmission scheme is based on
Orthogonal Frequency Division Multiple Access (OFDMA), we abstract the main problem in to
a radio RA problem in an OFDMA system. OFDMA plays a major role in the physical layer
specifications of future wireless technologies which is not confined to LTE (e.g., WIMAX, IMT-
A) [2]. In general OFDMA based transmission systems, the transmit power and sub-carriers are
dynamically assigned to the users, based on their channel state information (CSI) to optimize a
certain performance. Indeed this process requires solving combinatorial optimization problems.

The main contribution of this paper is to provide a low complexity very close to optimal resource
allocation algorithm for joint optimization of multiuser subcarrier assignment and power allocation
which is a simple extension of our previous work [3]. Numerical results are provided to compare
the performance of the proposed algorithm to Lagrange relaxation based suboptimal methods [4]
as well as to optimal exhaustive search based method. We did not consider each and every fine
details of the LTE time/frequency domain structures of the frames which is out of the scope of the
main concern. But the proposed solution method indeed can be used as a basic building block for
more general resource allocation algorithms for practical LTE downlink transmissions after having
appropriate modifications.

SYSTEM MODEL AND PROBLEM FORMULATION

Consider a single antenna OFDMA downlink transmission with K users and M subcarriers. The
signal received by user k in subcarrier m can be expressed as

rkm = hkmxkm

√
pkm + wkm, k = 1, . . . , K, m ∈ Sk, (1)

where k is the user index, m is the subcarrier index, Sk denotes the set of subcarriers allocated
to user k, xkm is the transmitted signal, pkm is the power allocated, hkm is channel frequency
response and wkm is the received noise. We assume that hkm is time-invariant and its value is
available at the base station. The noise samples are assumed to be independent and identically

distributed as wkm∼CN (0, σ2
km). We denote by ckm = |hkm|2

σ2
km

the channel signal-to-noise ratio

(SNR) of kth user in subcarrier m and by βk the weight associated with the rate of user k. The
weighted sum-rate maximization problem subject to a sum-power constraint PT can be formulated
as [3]

maximize
∑K

k=1

∑

m∈Sk
βk log2(1 + pkmckm)

subject to
∑K

k=1

∑

m∈Sk
pkm = PT

Sk ∩ Sl = ∅, ∀k 6= l
pkm ≥ 0, k = 1, . . . , K, m = 1, . . . ,M,

(2)

where variables are pkm and Sk.
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APPROXIMATED PRIMAL DECOMPOSITION BASED ALGORITHM

By considering an equivalent virtual system and introducing M new variables p̄m =
∑K

k=1 pkm,
m = 1, . . . , M , problem (2) can be be decomposed into a master problem and M subproblems,
one subproblem for each subcarrier m = 1, . . . ,M [3]. For a given subcarrier m, the subproblem
is given by

maximize
∑K

k=1 βk log2

(

1 +
pkm

p̄m − pkm + c−1
km

)

subject to
∑K

k=1 pkm = p̄m

pkm ≥ 0, k = 1, . . . , K,

(3)

where variables are pkm, k = 1, . . . ,K. The master problem can be expressed as

maximize
∑M

m=1 f⋆
m(p̄m)

subject to
∑M

m=1 p̄m = PT

p̄m ≥ 0, m = 1, . . . ,M,

(4)

where variables are p̄m and f⋆
m(p̄m) represents the optimal value of subproblem (3) for fixed p̄m.

Let us denote by P the feasible set of problem (3). Even though the subproblem (3) is not a convex
optimization problem, from [5, Corollary 32.3.4] it follows that the solutions of subproblems (3)
must be achieved at one of the vertices of the polyhedral set P . Consequently, the solutions of the
M subproblems can be expressed as

[p⋆
1m, . . . , p⋆

Km] = p̄me
T
jm

, jm = arg max
k

(1 + p̄mckm)βk , m = 1, . . . ,M. (5)

where jm represents the index of the user allocated to mth subcarrier. By substituting (5) in the
objective of (3), f⋆

m(p̄m) can be expressed as

f⋆
m(p̄m) = βjm

log2 (1 + p̄mcjmm) = max
k

βk log2 (1 + p̄mckm) , m = 1, . . . ,M. (6)

Note that the function f⋆
m(p̄m) is the pointwise maximum of a set of concave functions and thus

f⋆
m(p̄m) is not a concave function w.r.t p̄m [6] in general. Thus, standard convex optimization
tools (e.g., subgradient based methods) can not be directly applied to solve master problem (4).
The trick is to use the following concave lower bound on the objective function of problem (4) so
that approximated master problem is solved optimally.

M
∑

m=1

β
j
(i)
m

log2

(

1 + p̄mc
j
(i)
m m

)

≤
M
∑

m=1

f⋆
m(p̄m), [p̄1, . . . , p̄M ]T ∈ P̄ (7)

Thus, the proposed algorithm can be summarized as follows:

Algorithm 1 Approximated primal decomposition for OFDMA weighted sum-rate maximization with par-
allel initializations

1. initialization: Given the number of random initialization points Nrand. Let i = 1 and l = 0.

(a) Uniform power init.: p̄
(i)
m (0) = PT /M, m = 1, . . . , M

(b) Random power init: p̄
(i)
m (l) = U(0, 1).PT /M, m = 1, . . . ,M, l = 1, . . . , Nrand, where

U(0, 1) is a random number which is uniformly distributed between 0 and 1.

2. if l ≤ Nrand go to step 3, otherwise go to step 6.

3. solve the M subproblems (3) for p̄m = p̄
(i)
m (l) and return j

(i)
m (l), computed according to (5). Let

j
(i)
m = j

(i)
m (l) and g =

∑M

m=1 β
j
(i)
m

log2

(

1 + p̄mc
j
(i)
m m

)

.
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4. solve the following approximation of master problem (4)

maximize
∑M

m=1 β
j
(i)
m

log2

(

1 + p̄mc
j
(i)
m m

)

subject to
∑M

m=1 p̄m = PT

p̄m ≥ 0, m = 1, . . . , M,

(8)

and return the solution p̄⋆
m; let p̄

(i+1)
m (l) = p̄⋆

m and g⋆(l) =
∑M

m=1 β
j
(i)
m

log2

(

1 + p̄⋆
mc

j
(i)
m m

)

.

5. check a stopping criteria g⋆(l) = g:

(a) if the stopping criteria is not satisfied let i = i + 1 and go to step 3.

(b) otherwise store the power allocation p̄
(i+1)
m (l), subcarrier allocation j

(i)
m (l), and the associ-

ated objective value of problem (8) g⋆(l) for lth iteration, let l = l + 1 and go to step 2.

6. Choosing the best power and subcarrier allocation:

l⋆ = arg max
l∈{0...,Nrand}

f⋆(l). (9)

choose the power allocation and the subcarrier allocation stored in Step 5(b) which are associated
with l⋆.

The solution of problem (8) solved at step 3 is found by multilevel waterfilling (see [3] for more
details).

NUMERICAL RESULTS

The performance of the proposed algorithm is compared to the dual decomposition based algo-
rithm proposed in [4], denoted as WSRmax, as well as to the optimal algorithm based on exhaus-

tive search. For a fair comparison, we first define the metric ∆Cweighted sum = E
{

|Copt−Ĉsubopt|
Copt

}

,

the average normalized weighted sum-rate deviation (ANWSRD), where, Copt is the optimal

weighted sum-rate value obtained using optimal exhaustive search, Ĉsubopt is the estimated ob-

jective value from either Algorithm 1 or the WSRMax algorithm and expectation E{.} is taken
w.r.t channel realization. Since for large M the computational complexity of optimal exhaustive
search is prohibitively expensive. Thus, in our simulations we considered a small scale OFDMA
system with M = 8 subcarriers and K = 2 users. It should be emphasized that this limitation is
solely for the comparison purpose of Algorithm 1 with the optimal solution and not a limitation
of our Algorithm 1. A uniform power delay profile with 4 channel taps is considered. We assume

σ2
km = σ2, k = 1, . . . ,K, m = 1, . . . , M and define SNR per subcarrier as PT

M.σ2 .

Figure 1(a) shows the convergence behavior of the considered algorithms with SNR= 10dB for
Nrand = 0, 1, 5 and 10. The weights of the users are [1, 2]. The floor of the curves is due to the
suboptimality of the algorithms. The results show that Algorithm 1 converges faster than the WS-
RMax algorithm and provides smaller values of ANWSRD. Specifically, for any value of Nrand

Algorithm 1 requires only 3 iterations on average to achieve a constant level of ANWSRD whilst
the WSRMax algorithm requires around 15 iterations to reach a constant level. Even with just
uniform initialization (i.e., the case of Nrand = 0) the ANWSRD values achieved by proposed
algorithm is smaller as compared to that of WSRMax algorithm. Remarkable reduction of AN-
WSRD is obtained when Nrand is changed from 0 to 1. As Nrand increased the incremental gains
that can be obtained in terms of ANWSRD is reduced.

Then we compare the behavior of Algorithm 1 and the WSRMax algorithms using the following

metric Pε = Prob
{

| Copt − Ĉsubopt |> ε
}

, the probability of missing the global optimal, where ε

is a small number which quantifies the maximum admissible deviation between Copt and Ĉsubopt.

It is considered that the global optimum is missed if Ĉsubopt is more than ε away from Copt.

Figures 1(b) uses the same simulation setup as that in Figure 1(a) and depict the variation of
probability of missing the global optimal, Pε with the number of iterations. The floor of probability
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Pε is again due to the suboptimality of both algorithms. The influence of ε on Pε for fixedNrand (=
0) is totally indistinguishable in case of proposed algorithm. This behavior shows that the proposed
algorithm can arrive very close to optimal solutions within a very small number of iterations and
then it remains there. The results further show that the Pε evaluated using the WSRMax algorithm

is highly dependent on ε. That is, the smaller the deviations in the Ĉsubopt from the optimalCopt, the
larger the number of iterations required by the WSRMax algorithm to reach the expected target
value Pε. However, independent from the ε, proposed Algorithm 1 allows to find a suboptimal
solution within a small number of iterations. Results further show that as the number of parallel
initialization points are increased, Pε become almost zero. This confirms that most of the time our
proposed algorithm find the optimal solution.
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(a) Average normalized weighted sum-rate deviation vs.
Iterations for K = 2 users, M = 8 subcarriers and SNR
= 10dB.
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(b) Probability of missing global optimum vs. Iterations
for K = 2 users, M = 8 subcarriers and SNR = 10dB.

CONCLUSIONS

A joint subcarrier and power allocation algorithm has been proposed for maximizing the weighted
sum-rate in multiuser OFDMA downlink systems which can be used as a building block for more
general resource allocation algorithms for long term evolution downlink transmissions. The pro-
posed solution method is an simple extension of our previous work [3] and the algorithm is based
on an approximated primal decomposition based method. The original nonconvex optimization
problem is divided into two subproblems which can be solved independently. Numerical results
show that, despite its reduced computational complexity, the proposed algorithm provides very
close to optimal performance.
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