
Some Interesting Effects when Homogenizing Plasmonic Composites

Henrik Wallén Henrik Kettunen Jiaran Qi Ari Sihvola

Aalto University School of Science and Technology
Department of Radio Science and Engineering

PO Box 13000, FI–00076 Aalto, Finland

Email: henrik.wallen@tkk.fi

INTRODUCTION

The effective permittivity εeff of a composite is usually not the volume average of its
constituents. The impact of the microstructure of the composite is important even for
ordinary dielectric composites with modest contrasts between the constituents, and the
effect can be dramatic for plasmonic composites with negative permittivity and small
losses. In the idealized case, with lossless plasmonic inclusions (εi < 0) in a dielectric
environment (εe > 0), we can theoretically get any real value for εeff due to plasmonic
resonances. When realistic losses are taken into account, the plasmonic resonances are
damped, but still the (real part of) εeff can be significantly larger than εe or smaller than
εi. Moreover, if we consider the plane-wave transmission and scattering from a slab with
such resonant inclusions, a straightforward retrieval of εeff yields reasonable results, but
the simultaneously obtained effective permeability µeff seems unphysical.

In this presentation, we discuss these interesting effects using a geometrically very
simple composite.

QUASISTATIC EFFECTIVE PERMITTIVITY USING MIXING FORMULAS

Consider a 2D composite with circular inclusions with permittivity εi occupying an area
fraction p in an environment with permittivity εe. Many mixing formulas for estimating
the effective permittivity εeff of such a composite are available [1], and two of the most
popular and useful ones are the Maxwell Garnett formula

εeff = εe +
2p εe (εi − εe)

εi + εe − p (εi − εe)
, (1)

and the (symmetric) Bruggeman formula

εeff =
1

2

(

B ±
√

B2 + 4εiεe

)

, B = εe − εi + 2p (εi − εe) . (2)

For ordinary dielectric mixtures, it is well known that the Maxwell Garnett formula is
better suited for mixtures with well separated inclusions, while the Bruggeman formula
is more accurate for random mixtures where clustering is allowed [1].

The difference between the estimates (1) and (2) can be significant for mixtures with
1 ≤ εe ≪ εi but both estimates are within the interval εe ≤ εeff ≤ εi for all 0 < p < 1.
However, if one constituent has negative permittivity, say εi < 0 and εe > 0, the situation
is qualitatively different. Then, the Maxwell Garnett formula predicts one plasmonic
resonance at a certain p, while the Bruggeman formula gives a region with complex (lossy)
effective permittivity although both εi and εe are real. One example is shown in Figure 1,
and more details on the applicability of mixing formulas for plasmonic composites can be
found in [2].
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Figure 1: Quasistatic effective permittivity using the Maxwell Garnett (εMG) and Brugge-
man (εBr = ε′Br− jε′′Br) formulas for a composite with cylindrical inclusions with εi = −4
occupying an area fraction p in air (εe = 1). The Maxwell Garnett formula predicts a
plasmonic resonance at p = 60%, while the Bruggeman formula predicts (quite strange)
losses for 10% < p < 90%.

The complex frequency dependent permittivity of many metals [3] (approximately)
obey a Drude dispersion of the form

ε(ω) = ε′ − jε′′ = 1−
ω2

p

ω2 − jων
,

{

ωp = plasma frequency,

ν = damping frequency≪ ωp,
(3)

where the real part ε′ is negative below ωp, while the imaginary part ε′′ can be relatively
small. Using a mixture with εi given by this Drude model, we get the Lorentz-dispersion

εeff(ω) = 1 +
ω2

p,eff

ω2

0,eff − ω2 + jωνeff
,











ωp,eff = ωp

√
p,

ω0,eff = ωp

√

(1− p)/2,

νeff = ν,

(4)

for the effective permittivity using theMaxwell Garnett fomula (1). Choosing ν = ωp/100
and the fairly small area fraction p = 10%, we get the result shown in Figure 2. If the
circular inclusions are arranged in a square lattice, this estimate is extremely accurate in
the quasistatic limit compared with the series solution in [4].

S-PARAMETER RETRIEVAL

The probably most common way to determine the effective material parameters εeff, µeff

for metamaterials is to simulate or measure the S-parameters for a slab, i.e., the reflection
and transmission of a normally incident plane wave, and compute εeff, µeff assuming that
the composite slab behaves as a homogeneous isotropic one [5, 6]. However, the validity
(or accuracy) of this simple model has also been criticized [7, 8]

In this case, we take a five layer slab with the same composite as in Figure 2 and sim-
ulate the S-parameters using a 2D finite-element solver (COMSOL Multiphysics 3.5a).
Assuming a square lattice of circular inclusions and scaling the unit cell side-length a
differently compared with the plasma wavelength λp of the Drude model (3), we get the
results in Figure 3. The retrieved εeff seems very reasonable and it converges, as expected,
towards the quasistatic prediction with smaller unit cells compared with the wavelength.
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Figure 2: A composite with p = 10% cylindrical inclusions with the Drude dispersion on
the left gives the effective permittivity with the Lorentz dispersion on the right using the
Maxwell Garnett formula.

However, the retrieved µeff shows a similar kind of “anti-resonance” as many metama-
terials with more complicated resonant inclusions. This is clearly not reasonable, and it
suggests that the five-layer slab is not actually effectively homogeneous enough near the
(physically perfectly reasonable) plasmonic resonance. Indeed, comparing the oblique
reflection and transmission for the composite slab with the homogenized one reveals that
the retrieved εeff and µeff are not very accurate.

CONCLUSIONS

A composite with plasmonic inclusions with realistic losses can have an effective qua-
sistatic permittivity with a strong resonance at some frequency. However, a slab of the
composite does not necessarily behave as a homogeneous one. The problems in the ho-
mogenization of the above presented composite slab are actually very similar to the ones
in many contemporary metamaterial-realizations, and so this geometrically very simple
composite can be useful as a benchmark problem.
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Figure 3: Effective permittivity εeff = ε′eff− jε′′eff (top) and permeability µeff = µ′

eff− jµ′′

eff

(bottom), retrieved from simulated S-parameters. The permittivity seems reasonable and
converges towards the quasistatic prediction (dashed line), but the permeability shows an
unphysical “anti-resonance” in addition to weak Fabry–Pérot resonances.
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