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INTRODUCTION

The standard method of calculating the spectrum of a digital signal is based on the Fourier
transform, which gives the amplitude and phase spectra at a set of equidistant frequencies
from signal samples taken at equal intervals. In this paper a different method based on
stochastic inversion is introduced. It does not imply a fixed sampling rate, and therefore
it is useful in analysing geophysical signals which may be unequally sampled or may
have missing data points. This could not be done by means of Fourier transform without
preliminary interpolation. Another feature of the inversion method is that it allows un-
equal frequency steps in the spectrum, although this property is not needed in practice.
The method has a close relation to methods based on least-squares fitting of sinusoidal
functions to the signal. However, the number of frequency bins is not limited by the num-
ber of signal samples. In Fourier transform this can be achieved by means of additional
zero-valued samples, but no such extra samples are used in this method. Finally, if the
standard deviation of the samples is known, the method is also able to give error limits to
the spectrum. This helps in recognising signal peaks in noisy spectra.

METHOD

Consider a model of a time signal x(t) in terms of sinusoidal oscillations at m angular
frequencies ωk, k = 1, 2, . . . ,m with different amplitudes and phases, i.e.

x(t) =
m
∑

k=1

(ak sinωkt+ bk cosωkt). (1)

By sampling the signal at times tj, j = 1, 2, . . . , n, we obtain a sample sequence of n
numbers

x(tj) =
m
∑

k=1

(ak sinωktj + bk cosωktj) + εj, j = 1, 2, . . . , n. (2)

Here sampling is considered as a measurement of the signal value and εj is the true mea-
surement error (not an error estimate). Since x(t) may contain a DC component, it is
reasonable to choose ω1 = 0. Then (2) can be written as

x(tj) = b1 +
m
∑

k=2

(aksjk + bkcjk) + εj, (3)
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where
sjk = sinωktj and cjk = cosωktj. (4)

The amplitudes ak and bk are unknowns which are to be determined.

By collecting all unknonws, measurements and measurement errors into column vectors
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and ε =
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, (5)

all equations of the form (3) can be written as a single matrix equation

x = Ā ·X+ ε, (6)

where

Ā =

















1 c12 c13 . . . c1m s12 s13 . . . s1m
1 c22 c23 . . . c2m s22 s23 . . . s2m
1 c32 c33 . . . c3m s32 s33 . . . s3m
...

...
...

. . .
...

...
...

. . .
...

1 cn2 cn3 . . . cnm sn2 sn3 . . . snm

















. (7)

This is a stochastic linear inversion problem with a well-known solution [1]

X0 = Q̄−1 · (ĀT · Σ̄
−1
) · x. (8)

Here T indicates transpose,
Σ̄ = 〈ε · εT 〉 (9)

is the covariance matrix of the Gaussian random error vector ε and

Q̄ = ĀT · Σ̄
−1

· Ā (10)

is the Fisher information matrix. The statistical errors of the unknowns are given by the
posteriori covariance matrix

Σ̄X = Q̄−1. (11)

Solution (8) gives the unknonwn amplitudes ak and bk for each frequency component.
When they are known, the power of the frequency component ωk is given by

Pk = a2k + b2k. (12)

SAMPLE RESULTS

A special property of the method is that it allows the determination of a greater number of
unknowns than the number of measurements. This means that the number of frequency
bins in the spectrum can be large. However, the spectral resolution is determined by the
length of the sample sequence in the same way as in Fourier transform. Adding more
frequency bins has the same interpolating effect as adding zeros to the end of the sample
sequence and using Fourier transform.
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Figure 1: Example of a time series with gaps (grey stripes) and the calculated power
spectrum.

As an example of the method, the power spectrum of the virtual height of the ionospheric
F layer (hmF2) was calculated. The data were measured at Sodankylä, Finland, in 1957–
2006, covering about 4.5 solar cycles. The peak altitude hmF2 was calculated from the
peak plasma frequencies of the F2 and E layers and the maximum usable frequency for a
3000-km radio path [2]. Hourly monthly medians averaged over 10–14 LT were used in
the analysis. Since months have different lengths, this leads to variable sampling intervals.
The data also contains several gaps and therefore Fourier transform could not be directly
applied to this time series.

The top panel of Fig. 1 shows the time series with intermediate gaps indicated by the
grey stripes. The number of data points in this time series is 491. The power spectrum is
shown in the bottom panel. The number of frequencies in the spectrum is 1200 (i.e. 2399
unknonwns in the inversion). The most prominent spectral peak at low frequencies is due
to the solar cycle variation. The next peaks are the annual (1/year) and semiannual (2/year)
variations and the second harmonic of the annual variation (3/year). An interesting feature
is that, on both sides of the the semiannual variation, additional prominent spectral peaks
appear. They are shifted from the semiannual peak by an amount which is equal to the
frequency of the solar cycle variation. Hence they are due to nonlinear mixing of the
semiannual variation with the solar cycle.

DISCUSSION

The method is only briefly introduced in this paper. A more thorough mathematical treat-
ment shows that it is based on finding the most probable values of the amplitudes and
phases of each frequency of the signal spectrum. This also explains why the number of
unknowns can indeed exceed the number of measurement values. The single example
shown in Fig. 1 demonstrates the power of the method in calculating spectra from data
sequences with unequal sampling intervals and data gaps. Other examples have been cal-
culated which indicate that even long gaps in the data have no effect on the widths of the
spectral peaks but they only create random noise peaks. If a gap is too long, weak spectral
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peaks may be embedded in noise.

The method described in this paper is actually not completely new [3]. However, a new
aspect in the present work is that the number of frequency bins in the spectrum is not
limited by the number of samples as believed before. This is convincingly demonstrated
by Fig. 1, as well as by a number of other examples. The use of stochastic inversion as
a starting point also gives a deeper insight in the method than the previous approaches
do. Furthermore, if error estimates of data samples are available, the method also gives
a possibility to calculate an error limit for each spectral point. This, however, is not
investigated here.
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